A Stochastic Fractional Calculus with Applications to Variational Principles

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Brownian motion: stochastic calculus and applications

Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this note we will survey some facts about the stochastic calculus with respect to fBm using a pathwise approach and the techniques of the Malliavin calculus. Some applications in turbulence and finance will be discussed. Math...

متن کامل

Generalized Multiparameters Fractional Variational Calculus

This paper builds upon our recent paper on generalized fractional variational calculus FVC . Here, we briefly review some of the fractional derivatives FDs that we considered in the past to develop FVC. We first introduce new one parameter generalized fractional derivatives GFDs which depend on two functions, and show that many of the one-parameter FDs considered in the past are special cases o...

متن کامل

Stochastic calculus with respect to fractional Brownian motion

— Fractional Brownian motion (fBm) is a centered selfsimilar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1/2, the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô...

متن کامل

Fractional-Order Variational Calculus with Generalized Boundary Conditions

This paper presents the necessary and sufficient optimality conditions for fractional variational problems involving the right and the left fractional integrals and fractional derivatives defined in the sense of Riemman-Liouville with a Lagrangian depending on the free end-points. To illustrate our approach, two examples are discussed in detail.

متن کامل

Fractional calculus and its applications.

Fractional calculus was formulated in 1695, shortly after the development of classical calculus. The earliest systematic studies were attributed to Liouville, Riemann, Leibniz, etc. [1,2]. For a long time, fractional calculus has been regarded as a pure mathematical realm without real applications. But, in recent decades, such a state of affairs has been changed. It has been found that fraction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and Fractional

سال: 2020

ISSN: 2504-3110

DOI: 10.3390/fractalfract4030038